Full-Baffle TUNAIR™ Shake Flask Kit, 2.5 Liters

image

Full-Baffle TUNAIR™ Shake Flask Kit, 2.5 Liters

Model Number SS-6003C

$298.71

  • Item Description
  • Specifications
  • Technical Information
  • Comes complete withfour (4) polypropylene2.5L Full-Baffle TUNAIR Shake Flasks,four (4) two-piece caps, and five (5) dri-gauze filters.

The TUNAIR™Shake Flask Systems are a unique and patented flask and closure system, designed for microbiology and biotechnology applications. This system provides optimum growth conditions for aerobic microorganisms, mammalian cells, and plant cells. They also provide better culture growth and productivity than standard Erlenmeyer flasks. The TUNAIR™’s high oxygen absorption rate is due to the unique baffling and turbo-vane closure design. The TUNAIR™systems are designed to increase the availability of dissolved oxygen as well as improve cell yields.

The Full-Baffle Shake Flask has six baffles that produce a propeller motion. The working volume is 1L.

The Dri-Gauze filter is 0.22 micron and constructed of nitrocellulose. Each filter can be used 10 - 12 times. The Dri-Gauze filters can beautoclaved in the cap and left in place until a new filter is needed.

The two piece cap assemblies are constructed of polypropylene and are resistant to most solvents. All flasks and caps are fully autoclavable prior to reuse and filter linings can also be autoclaved or simply replaced. To replace the filter lining in the cap assembly, simply pinch the flanges of the inner-closure shell until they snap loose. Then, pull apart and remove used lining. Replace the lining by sandwiching it between two parts of the cap and snap the cap back together. When reassembling the cap, ensure the flanges from the inner piece snap into the mated grooves in the outer piece. This will ensure the cap assembly stays together during use.

All TUNAIR™ flasks and caps can be cleaned by soaking in water with a light detergent solution to loosen dirt and contaminants, then air dry.

Flask Dimensions:
Flask Size: 2.5L
Working Volume: 1L
Base Diameter: 6.50” [16.51cm]
Neck Diameter: 3.00” [7.62cm]
Height: 10.75” [27.31cm]
Weight: 0.02 lbs. [0.008Kg]

Mixing:
Full-Baffle (6 Baffles): Propeller Motion

Shaker Speed:
1” Throws: 300-400rpm or possibly higher
2” Throws: 150-200rpm or possibly higher

Material:
All TUNAIR flasks and caps are constructed of chemical resistant polypropylene. All flasks and caps are fully autoclavable.

Cleaning:
All TUNAIR flasks and caps can be cleaned by soaking in water with a light detergent (i.e. Joy) solution to loosen particulates and contaminants; air dry. All TUNAIR flasks and caps can be autoclaved, if required.

Cell Growth Evaluation of Commonly Used Shake Flasks

TUNAIR™ flasks were compared to conventional flasks using four different types of microorganisms;Escherichia coli,Saccharomyces cerevisiae,Penicillium avellaneum, andStreptomyces chartreusis. The aeration capacities of the shake flasks were determined by the sulfate oxidation method, and the values shown below are presented as oxygen absorption rate (OAR) in mM oxygen/L/Min. The growth rates ofE.coliandS.cerevisiaewere expressed as optical densities (OD) at 555mM. ForS.chartreusisandP.avellaneumgrowth rates were evaluated by percent sedimentation. ForE.coliandS.cerevisiae, the growth rates were determined after an 18-hour incubation period; forS.charteusis, a 24-hour incubation period; and forP.avellaneum, a 72-hour incubation period. Growth and OAR evaluations were carried out with 3-9 replicates and statistically analyzed using Turkey’s w-procedure. See results below.

Growth Evaluation of Four (4) Microbial Types in TUNAIR™ Flasks vs. Other Currently Used Shake Flasks
OAR Value OD @ 555mM % Sedimentation
Flask mM O2/L/Min. E.coli S.cerevisiae S.chartreusis P.aveilaneum
TUNAIR™ Full-Baffle 4.25 7.09 5.63 19.7 3.3M
TUNAIR™ Half-Baffle 1.22 5.36 5.57 27.73 30.50P
Triple Indented Flasks 2.47 5.97 5.31 19.20 9.50MP
Unbaffled Erlenmeyer 0.52 5.97 5.19 17.37 25.10P

*Growth Morphology: M, mycelial; P, pellet; MP, mixed mycelial. The mycelial growths mostly adhered to the walls of the flask, which accounted for the low overall sedimentation value.

Reference Papers:

1.Method to Increase the Yield of Eukaryotic Membrane Protein Expression inSaccharomyces Cerevisiae

2.Optimisation of Recombinant Production of Active Human Cardiac SERCA2a ATPase

3.Structural Studies of Tri-Functional Human GART

SPECIAL OFFER

Enter your email address to get 25% off your order and free shipping today

image